A

Argonne

NATIONAL
LABORATORY

... for a brighter future

UChicago»

Argonne,.

Ruby on Rails

::The New Gem of Web Development

Ross Pallan

IT Project Manager

Argonne National Laboratory
rpallan@anl.gov

Ruby on Rails

B Ruby on Rails is a web application framework written in Ruby, a
dynamically typed programming language. The amazing productivity
claims of Rails is the current buzz in the web development community. If
your job is to create or manage web applications that capture and
manipulate relational database from a web-based user interface, then
Ruby on Rails may be the solution you've been looking for to make your
web development life easier.

B In this presentation:
— Get an introduction to Ruby on Rails
— Find out what’s behind the hype
— See it in action by building a fully functional application in minutes

’ Ruby What is Ruby?

A Programmer’s Best Friend

B Ruby is a pure object-oriented programming language with a super clean
syntax that makes programming elegant and fun.

— In Ruby, everything is an object
B Ruby is an interpreted scripting language, just like Perl, Python and PHP.

B Ruby successfully combines Smalltalk's conceptual elegance, Python's
ease of use and learning and Perl's pragmatism.

B Ruby originated in Japan in 1993 by Yukihiro “matz” Matsumoto, and has
started to become popular worldwide in the past few years as more
English language books and documentation have become available.

B Ruby is a metaprogramming language. Metaprogramming is a means of
writing software programs that write or manipulate other programs
thereby making coding faster and more reliable.

What is Rails?
Ruby on Rails or just Rails (RoR)

Rails is an open source Ruby framework for developing database-backed
web applications.

Created by David Heinemeier Hansson — DHH Partner, 37Signals
http://money.cnn.com/magazines/business2/peoplewhomatter/

The Rails framework was extracted from real-world web applications.
That is, Rails comes from real need, not anticipating what might be
needed. The result is an easy to use and cohesive framework that's rich
in functionality, and at the same time it does its best to stay out of your
way.

All layers in Rails are built to work together so you Don’t Repeat Yourself
and can use a single language from top to bottom.

Everything in Rails (templates to control flow to business logic) is written
in Ruby

— Except for configuration files - YAML

Rails Strengths — It’s all about Productivity

B Metaprogramming techniques use programs to write programs. Other
frameworks use extensive code generation, which gives users a one-time
productivity boost but little else, and customization scripts let the user add
customization code in only a small number of carefully selected points

— Metaprogramming replaces these two primitive techniques and
eliminates their disadvantages.

— Ruby is one of the best languages for metaprogramming, and Rails
uses this capability well.

B Scaffolding
— You often create temporary code in the early stages of development
to help get an application up quickly and see how major components
work together. Rails automatically creates much of the scaffolding
you'll need.

Rails Strengths — Write Code not Configuration

B Convention over configuration

— Most Web development frameworks for .NET or Java force you to write pages
of configuration code. If you follow suggested naming conventions, Rails
doesn't need much configuration. In fact, you can often cut your total
configuration code by a factor of five or more over similar Java frameworks

just by following common conventions.
* Naming your data model class with the same name as the corresponding
database table
* ‘id’ as the primary key name
B Rails introduces the Active Record framework, which saves objects to the

database.

— Based on a design pattern cataloged by Martin Fowler, the Rails version of
Active Record discovers the columns in a database schema and automatically

attaches them to your domain objects using metaprogramming.
— This approach to wrapping database tables is simple, elegant, and powerful.

Rails Strengths — Full-Stack Web Framework

B Rails implements the model-view-controller (MVC) architecture. The
MV C design pattern separates the component parts of an application

— Model encapsulates data that

the application manipulates, r Model
pIUS domain-specific Iogic * Encapsulates application state
. . . * Responds to state queries
— View is a rendering of the » Exposes application

functionality
» Notifies views of changes

model into the user interface

— Controller responds to events
from the interface and causes
actions to be performed on the
model. a

: a
] View Controller
Vi lecti
— MVC pattern allows rapld b ReRders the Fiodels e Sesaidn » Defines application behavior
Change and evolution of the » Requests updates from models . M:zselus:;;zﬁons 0
_) model u 5
user interface and controller ~ |[FHISESEEEEIUCICEGR @ B B B B B W TR
Allows controller to select view User Gestures

* One for each functionality

separate from the data model

Method Invocations
pESD Events

Rails Strengths

B Rails embraces test-driven development.
— Unit testing: testing individual pieces of code
— Functional testing: testing how individual pieces of code interact
— Integration testing: testing the whole system
B Three environments: development, testing, and production
B Database Support: Oracle, DB2, SQL Server, MySQL, PostgreSQL, SQLite

B Action Mailer

B Action Web Service

B Prototype for AJAX

Rails Environment and Installing the Software

B Rails will run on many different Web servers. Most of your development
will be done using WEBFrick, but you'll probably want to run production
code on one of the alternative servers.

— Apache, Lighttpd (Lighty),Mongrel
B Development Environment

— Windows, Linux and OS X

— No IDE needed although there a few available like Eclipse, RadRails
B [nstalling Ruby for Windows

— Download the “One-Click Ruby Installer from
http://rubyinstaller.rubyforge.org

B Installing Ruby for Mac
— It's already there!

B RubyGems is a package manager that provides a standard format for
distributing Ruby programs and libraries

Installing Rails
— >gem install rails —include-dependencies

Rails Tutorial

B Create the Rails Application
— Execute the script that creates a new Web application project
>Rails projectname

— This command executes an already provided Rails script that creates
the entire Web application directory structure and necessary
configuration files.

Rails Application Directory Structure

B App> contains the core of the application

« /models> Contains the models, which encapsulate application
business logic

* Wviews/layouts> Contains master templates for each controller
* /views/controllername> Contains templates for controller actions

* /helpers> Contains helpers, which you can write to provide more
functionality to templates.

B Config> contains application configuration, plus per-environment
configurability - contains the database.yml file which provides details of the
database to be used with the application

B Db> contains a snapshot of the database schema and migrations
B Log> application specific logs, contains a log for each environment

B Public> contains all static files, such as images, javascripts, and style
sheets

B Script> contains Rails utility commands
B Test> contains test fixtures and code

B Vendor> contains add-in modules.

Hello Rails!

B Need a controller and a view
>ruby script/generate controller Greeting
B Edit app/controllers/greeting_controller.rb
B Add an index method to your controller class
class GreetingController < ApplicationController
def index
render :text => "<h1>Hello Rails World!</h1>"
end
end

— Renders the content that will be returned to the browser as the
response body.

m Start the WEBTrick server
>ruby script/server
http://localhost:3000

Hello Rails!

B Add another method to the controller
def hello
end

B Add a template app/views/greeting>hello.rhtml
<htmlI>
<head>
<title>Hello Rails World!</title>
</head>
<body>
<h1>Hello from the Rails View!</h1>
</body>
</html>

Hello Rails!

B ERb - Embedded Ruby. Embedding the Ruby programming language into
HTML document. An erb file ends with .rhtml file extension.

— Similar to ASP, JSP and PHP, requires an interpreter to execute and
replace it with designated HTML code and content.

B Making it Dynamic
<p>Date/Time: <%= Time.now %></p>

B Making it Better by using an instance variable to the controller
@time = Time.now.to_s
— Reference it in .rhtml <%= @time %>

B Linking Pages using the helper method link_to()
<p>Time to say <%= link_to "Goodbye!", :action => "goodbye" %>

Building a Simple Event Calendar

B Generate the Model (need a database and table)
B Generate the Application

B Configure Database Access

B Create the Scaffolding

B Build the User Interface

B Include a Calendar Helper

Export to iCal (iCalendar is a standard for calendar data exchange)

Create the Event Calendar Database

B Create a Database
— Naming Conventions

» Tables should have names that are English plurals. For example,
the people database holds person objects.

B Use object identifiers named id.

» Foreign keys should be named object _id. In Active Record, a row
named person_id would point to a row in the people database.

- ID
» Created on
« Updated on
— Edit the config/database.yml
B Create a Model
B Create a Controller

Rails Scaffolding

B Scaffold
— Building blocks of web based database application

— A Rails scaffold is an auto generated framework for manipulating a
model

B CRUD Create, Read, Update, Delete
>ruby script/generate model Event
>ruby script/generate controller Event
* Instantiate scaffolding by inserting
 scaffold :event into the EventController

» The resulting CRUD controllers and view templates were created
on the fly and not visible for inspection

Rails Scaffolding

B Generating Scaffolding Code
B Usage: script/generate scaffold ModelName [ControllerName] [action,...]
>ruby script/generate scaffold Event Admin

— Generates both the model and the controller, plus it creates scaffold
code and view templates for all CRUD operations.

— This allows you to see the scaffold code and modify it to meet your
needs.

* Index

* List

« Show

* New

» Create
- Edit

« Update
* Destroy

Create the User Interface

B While functional, these templates are barely usable and only intended to
provide you with a starting point

— RHTML files use embedded Ruby mixed with HTML ERDb
« <% ...%> # executes the Ruby code
* <%= ... %> # executes the Ruby code and displays the result
— Helpers
— Layouts
— Partials
— Error Messages
— CSS
— AJAX

B Form Helpers
— Start, submit, and end forms

User Interface with Style

B Layouts
/standard.rhtml
Add layout "layouts/standard™ to controller

W Partials
/_header.rhtml
|/ _footer.rhtml

B Stylesheets
— Publis/stylesheets/*.css

NOTE: The old notation for rendering the view from a layout was
to expose the magic @content for layout instance variable. The
preferred notation now is to use yield

Enhance the Model

B Enhancing the Model
— The model is where all the data-related rules are stored
— Including data validation and relational integrity.

— This means you can define a rule once and Rails will automatically
apply them wherever the data is accessed.

M Validations - Creating Data Validation Rules in the Model
validates_presence_of :name

validates_uniqueness_of :name
validates_length_of :name :maximum =>10
B Add another Model
® Migrations
— Rake migrate

Create the Relationship

B Assigning a Category to an Event
— Add a field to Event table to hold the category id for each event
— Provide a drop-down list of categories
B Create Relationship
— Edit models\event.rb
Class Event < ActiveRecord::Base
belongs_to :category
end
— Edit models\category.rb
Class Category < ActiveRecord::Base
has_many :events
end

— An Event belongs to a single category and that a category can be
attached to many events

Rails Relationships

B Model Relations

— Has_one => One to One relationship

— Belongs_to => Many to One relationship (Many)

— Has_many => Many to One relationship (One)

— Has_and_belongs_to_many =>Many to Many relationships

Associate Categories to Events

B Edit Event Action and Template to assign categories
def new
@event = Event.new
@categories = Category.find(:all)
end

def edit
@event = Event.find(@params]:id])
@categories = Category.find(:all)
end
® Edit _form.rhtml

<%= select "event", "category id", @categories.collect {|c| [c.name, c.id]} %>

Calendar Helper

M This calendar helper allows you to draw a databound calendar with fine-
grained CSS formatting without introducing any new requirements for
your models, routing schemes, etc.

H Installation:
— script/plugin install http://topfunky.net/svn/plugins/calendar_helper/
— List plugins in the specified repository:
plugin list --source=http://dev.rubyonrails.com/svn/rails/plugins/
— To copy the CSS files, use
>ruby script/generate calendar_styles
B Usage:
<%= stylesheet_link_tag 'calendar/blue/style' %>
<%= calendar(:year => Time.now.year, :month => Time.now.month) %>

iCalendar and Rails

B gem install icalendar

B Add a method to generate the event:

require ‘icalendar’
class IcalController < ApplicationController
def iCalEvent
@myevent = Event.find(paramsj:id])
@cal = Icalendar::Calendar.new
event = Icalendar::Event.new
event.start = @myevent.starts_at.strftime("%Y %m%dT%H%M%S")
event.end = @myevent.ends_at.strftime("%Y%m%dT%H%M%S")
event.summary = @myevent.name
event.description = @myevent.description
event.location = @myevent.location
@cal.add event
@cal.publish
headers['Content-Type'] = "text/calendar; charset=UTF-8"
render_without_layout :text => @cal.to_ical
end

A

Argonne

TORY

RSS and Rails

B Create a new feed controller
def rssfeed
conditions = ['MONTH(starts_at) = ?', Time.now.month]

@events = Event.find(:all, :conditions => conditions, :order =>
"starts_at", :limit =>15)
@headers["Content-Type"] = "application/rss+xml|"

end

B Create a rssfeed.rxml view

B Add a link tag to standard.rhtml

<%= auto_discovery_link_tag(:rss, {:controller => 'feed’, :action =>
'rssfeed'}) %>

AJAX and Rails

B Add javascript include to standard.rhtml
<%= javascript_include_tag :defaults %>

B Add to Event Controller
auto_complete for :event, :location

B Form Helper

<%= text_field_with_auto _complete :event, :location%>

Summary

B Rail’s two guiding principles:
— Less software (Don’t Repeat Yourself - DRY)
— Convention over Configuration (Write code not configuration files)
B High Productivity and Reduced Development Time
— How long did it take?
— How many lines of code?
>rake stats
— Don'’t forget documentation...
>rake appdoc

B OQOur experience so far.

B Unless you try to do something beyond what you have already mastered,
you will never grow. — Ralph Waldo Emerson

Rails Resources

B Books
— Agile Web Development with Rails —Thomas/DHH
— Programming Ruby - Thomas
m Web sites
— Ruby Language
http://www.ruby-lang.org/en/
— Ruby on Rails
http://www.rubyonrails.org/
— Rails API
 Start the Gem Documentation Server
Gem_server http://localhost:8808
— Top Tutorials
http:/lwww.digitalmediaminute.com/article/1816/top-ruby-on-rails-tutorials
— MVC architectural paradigm
http://en.wikipedia.org/wiki/Model-view-controller
http://java.sun.com/blueprints/patterns/MVC-detailed.html

David Heinemeier Hansson (Ruby on Rails creator) explained, "Once you've tried
developing a substantial application in Java or PHP or C# or whatever," he says, "the
difference in Rails will be readily apparent. You gotta feel the hurt before you can

appreciate the cure.”

JAVA |

| NANUTSHEL

ATTERNS OF ENTERPRIST
APPLICATION ARCIHT IS TURE

i WA XDocetNACTION

ﬁ' Iwa Web Services
Java LEI-ILI"r'rﬂN-I Bcst Practices ==

Jtinit IN ACTION
E hL'lrt1 Struts 2
r‘ Jakarta Struts Cookbook. =— £

Java Serviet &
! JSP Cookbook

E Java .. XSLT
n m L*
FORTSINT R
l_—l I "MININ

z B e Ruby a
. ACTION —
i #% STRUTSIH“——- — P e, Rails ji

€ Darrin Yyeissinger (darrin weissingerglcenterstone org)

A
Argoromeo ,

